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Abstract
Predictions of glass transitions from the idealized mode-coupling theory (MCT)
are tested for systems with intermediate-range particle attractions. Liquid
structure input to MCT is provided by the Asakura–Oosawa (AO) theory for
the depletion interaction, used as an idealized model for structures in colloid–
polymer mixtures. The effective one-component formulation of the AO theory
is verified to capture the complete pair structure found from the binary version
of the theory also for polymer–colloid size ratios somewhat larger than those
for which an exact mapping of the two descriptions holds. The Percus–Yevick
theory is shown to provide an accurate structural input to MCT, at least in the
single-phase fluid region. With this combination of theories, very reasonable
predictions for locations of glassy states in the experimental phase diagram
are obtained for polymer–colloid size ratios somewhat larger than have been
considered before. Simple approximations are also suggested for extracting the
remaining pair structure from calculations of the one-component AO theory.

1. Introduction

Colloidal particles interacting with moderately strong attractions can undergo both equilibrium
and non-equilibrium transitions. While the former is well known, an example of the latter is
physical gelation, associated with systems of colloidal particles acquiring solid-like properties
despite remaining disordered structurally and in which particle ‘bonds’ are significantly
reversible. This type of gelation in colloidal systems appears to be a common phenomenon.
It has been observed experimentally in several different colloid systems. Examples of gel-
forming systems include dispersions of sterically stabilized colloids, solutions of star polymers
and block copolymer micelles, either in marginal solvents [1–5] or interacting via the depletion
interaction in the presence of additives like non-adsorbing polymers [6–9].
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Building on the success of applying the idealized mode-coupling theory of glassy
dynamics [10–12] to hard-sphere colloids [13–17], it has more recently been tested for systems
of attractive colloids. This has been met by a considerable degree of success. It not only
captures a number of properties of these structurally arrested systems qualitatively, such as
large non-ergodicity parameters and a viscoelastic solid response, but it also predicts complex
structural arrest scenarios [18], which has led to a distinction between repulsive, hard-sphere-
like glasses and attractive glasses [19–21]. MCT has also been tested, albeit to a lesser
extent, in quantitatively reproducing locations of attractive glass/gel regions of experimentally
determined phase diagrams, where agreement has seemingly been fair [19, 22, 23]. Recent
studies [24–26], however, have shown that MCT predictions for systems associated with very
small ranges of attraction err in that structural arrest is predicted in the (metastable) single-phase
fluid region at low colloid concentrations, rather than phase separation followed by gelation.
It remains unknown whether MCT can be used to model these low-density gel transitions,
but proposals for applying MCT to situations when phase separation kinetics enter have been
advanced [27, 28].

The most extensive testing of the predictive ability of MCT for attractive colloids has
been for model systems of colloid–polymer mixtures, for which the colloid–colloid interaction
is of the depletion type [8]. Here, the polymer–colloid size ratio ξ determines the range of
the attraction and is particularly pivotal in that it controls the topology of the equilibrium
phase diagram [7, 29–32]. With a few exceptions [33], tests of MCT or related theories
for predicting low-density gel transitions or higher-density attractive glass transitions have
been made for small values of the size ratio, ξ < 0.1, i.e. for short-range attractions. For
sufficiently small ξ , the theory can be simplified by an asymptotic analysis to yield analytical
predictions [22, 23, 34, 35]. Unfortunately, for larger ranges of attraction similar simplifications
are not possible, and full numerical solutions are required.

In this work we aim to make comparisons with phase diagrams determined for moderately
ranged attractions, corresponding to larger values of ξ , but still sufficiently small that gel
states have been recorded experimentally. Essentially we take the extension of the MCT glass
transition, akin to the attractive glass branch at smaller ξ [18, 19, 23], as a model for locating the
gel states observed experimentally. As these occur in regions where one expects a metastable
binodal, we aim to see to what extent the MCT predictions for the glass transition can be used
to locate them in the phase diagram. We pursue a fully predictive modelling, relying on integral
equation theory predictions of the static structure to serve as input in MCT. The accuracy of the
static input is tested through comparisons with Monte Carlo simulations, where we pay special
attention to making sure that the one-component Asakura–Oosawa (AO) theory gives a faithful
representation of the complete microstructure. For the simple model of ideal polymer spheres,
pair-wise additivity of the AO potential remains accurate despite not being fulfilled rigorously,
and Percus–Yevick (PY) theory is shown to capture liquid structures nearly quantitatively in
the one-phase fluid region.

In what follows, we begin by briefly reviewing both the two-component and the effective
one-component descriptions of the AO interaction, restricting the analysis to ideal polymers.
We outline the method of computer simulation, followed by comparisons of the static structure
from simulation and from PY theory. We pay particular attention to evaluation of the structures
as obtained from PY theory because we apply the one-component description for values of ξ

where it is not an exact mapping of the binary AO system. In this context, we also make sure
that the polymer component is modelled in a reasonably accurate manner. Finally, the colloid–
colloid static structure factor is substituted in MCT, the predictions of which we compare with
experimental phase diagram data.
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2. Depletion interaction for ideal polymers

The depletion interaction arises in colloidal dispersions when adding for instance non-
adsorbing polymers. It manifests itself as an effective interaction within a one-component
description of a system of colloids and polymers. For ideal polymer spheres mixed with hard-
sphere colloids, when the size ratio ξ = σp/σc � 2/

√
3 − 1 ≈ 0.1547 [29], the system is

governed by pair-wise additivity of the AO potential [36–38],

φAO(r) =
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where σp and σc are diameters of polymers and colloids, respectively, and r is the separation
distance. The size ratio determines the range of the attraction and the osmotic pressure of
the polymer solution �p determines the magnitude of the attraction. In this description, the
polymers are assumed to be ideal and the osmotic pressure is given by van’t Hoff’s law,
�p = nr

pkBT . It is, however, important that the number density be based on the volume
available to the polymers as indicated by the superscript [7, 32].

Alternatively, the same system can be described as a non-additive binary hard-sphere
mixture [38, 39]. The colloids are modelled as hard spheres whereas the polymers are treated as
ideal, penetrable to one another, but with a hard-sphere interaction with respect to the colloids,
i.e.

φcc(r) =
{

∞ r < σc

0 r > σc
(2)

φcp(r) =
{

∞ r < σcp

0 r > σcp
(3)

φpp(r) = 0 (4)

where σcp = (σc + σp)/2. For small size ratios, ξ � 0.1547, all three- and higher-
body contributions to the effective potential vanish [29] and these two descriptions become
equivalent provided the mapping between them is done in a self-consistent way [40]. The key
parameter in this context is the free-volume fraction α = ηp/η

r
p of such an idealized colloid–

polymer mixture, relating the polymer volume fractions ηp and ηr
p to one another. The free-

volume fraction depends not only on the volume fractions but also implicitly on the colloid
structure as [40]

α = ηp

ηr
p

= 1 − ηc(1 + ξ)3 − 12η2
cξ

3

ηr
p

∫ 1+ξ

1
drr 2gcc(r; ηc, η

r
p)βφAO(r) (5)

where r is here non-dimensional on σc, and gcc(r; ηc, η
r
p), the colloid–colloid radial distribution

function, is obtained from a system of colloids interacting via the AO potential in equation (1).

3. Methods

All simulations were performed with the standard (canonical) NVT-Monte Carlo (MC)
technique in a simulation box of unit size using periodic boundary conditions [41]. One
MC cycle corresponds to one attempt to move all particles sequentially [42]. The maximum
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displacement step length was adjusted to reach an acceptance ratio of about 50% during the
equilibration phase, but it was kept fixed during production runs [43]. Simulations of the
one-component system interacting with the AO potential were performed with 4000 particles,
starting from an fcc lattice. They were equilibrated for at least 5 × 104 MC cycles and the
production phases were run for at least 104 MC cycles (5 × 104 cycles for determinations of
structure factors), accumulating averages every 50 cycles.

The binary mixture simulations were started from a total of 10 000 particles randomly
placed in the simulation box, except for the composition (ηc = 0.35, ηp = 0.05) for which 5000
particles were used. Since the total number of particles is the sum of colloids and polymers,
the number of colloids ranged from 78 to 519 for the compositions explored in this work.
These systems are difficult to equilibrate, owing to the inefficient sampling of configuration
space. Root mean square displacements of at least one box length during equilibration and
one half box length during production runs were imposed, in addition to monitoring the radial
distribution function, for approach to equilibrium.

The one-component PY theory was solved numerically for the AO potential using the
algorithm in [44]. The resulting colloid–colloid structure factors were subsequently used in
MCT to generate predictions for glass transitions. The long-time limit of the MCT equations
was solved in discretized form numerically by iteration on a wavevector grid with a resolution
given by k = N
k, where N = 900 and 
k ≈ 0.2σ−1

c . The limiting compositions that yield
non-zero solutions for the dynamic structure factor were identified by bracketing and were used
to locate glass transitions in the phase diagram.

4. Results and discussion

4.1. Liquid structure

We have compiled simulation data for the AO model with ξ = 0.25 for a number of
polymer–colloid compositions. Values close to this size ratio have been studied in several
experiments [7, 28, 45–47] and by computer simulation [48–51]. Perturbation [29, 31, 52],
free-volume [7, 32, 53, 54], integral equation [55], and density functional theories [56, 57] have
also been applied to model the phase behaviour of colloid–polymer mixtures. In particular, Ilett
and co-workers [7] employed polymer–solvent solutions at slightly-better-than-theta conditions
in their experiments, making an attempted comparison with results derived from AO theory
reasonable, at least for not too large values of ξ . Ilett et al in addition identify gel structures
where the dynamics becomes non-ergodic. We propose to use MCT based on AO model static
structures to predict their location in the experimental phase diagram. To this end, we first
verify that the one-component description remains an accurate representation of the binary AO
model. We do this by examining the complete microstructure at the pair level. Moreover, in
pursuing a predictive model, we test the integral equation theory against simulation results for
a relatively broad range of parameters.

As shown in the inset to figure 1, we have explored a large portion of the single-phase
part of the phase diagram for the AO system used in this work. The simulated compositions,
indicated by filled circles, are given in terms of the volume fractions of polymers and colloids,
ηp and ηc. At sufficiently large concentrations of polymer, colloid–colloid radial distribution
functions develop a shoulder in the structure just before the second peak. We interpret this
signature as a precursor to crystallization [58], and we confine most of our comparisons to
compositions where this is not observed (see the inset to figure 1). But it is worth noting that
the order parameters for crystallization, Q4 and Q6 [59], were not particularly large (in all
cases <0.07) for compositions where the shoulder was clearly observed [60].
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Figure 1. The colloid–colloid radial distribution function gcc(r) as a function of the separation
normalized by the colloid diameter. The lines correspond to MC simulation of the binary mixture
and the symbols to MC simulations of the effective one-component system interacting via the AO
potential for ξ = 0.25, ηc = 0.30 with ηp = 0.10 (line, circles, offset vertically by +3/2 for clarity)
and ηp = 0.20 (line, squares), yielding ηr

p = 0.22 and 0.42, respectively. Filled symbols mark
extrapolated values for the radial distribution functions at contact. The inset shows compositions
explored in this work where the line indicates the approximate location beyond which signs of phase
separation were noted.

In what follows, except when noted, all work is done for a size ratio ξ = 0.25. For
this size ratio the non-additive binary hard-sphere mixture cannot be mapped rigorously onto
the effective one-component system consisting of colloids interacting in a pair-wise additive
manner via the AO potential. However, it is expected that the size ratio is small enough
for pair-wise additivity to remain accurate [48, 49]. We verify this by comparing liquid
structures obtained from MC simulation of the binary and effective one-component models.
As an example, in figure 1, comparisons are shown for ηc = 0.30 with ηp = 0.10 and 0.20
(yielding ηr

p = 0.22 and 0.42, respectively), where the connection between the one- and two-
component descriptions is made via equation (5). As can be seen, the two determinations
from the simulations using the different descriptions agree closely, both concerning the overall
shape and also in the contact value of the radial distribution function. At the higher polymer
volume fraction in figure 1 the radial distribution function exhibits a shoulder in the second
peak structure as mentioned above, which is well described by the one-component description.

The remaining radial (pair) distribution functions can be extracted from the one-component
AO model by periodically inserting either one or two polymer spheres in the course of an
MC simulation. This procedure is exact for small size ratios and errors stemming from non-
pair-wise additivity of the AO potential are introduced when performed for larger size ratios,
unless many-body colloid correlations are accounted for [61]. Here we use it to determine
whether the mapping remains accurate for the complete pair-level structure for this size ratio.
In essence, this probes higher-order correlation function, albeit in an indirect fashion (see the
appendix). In figure 2 we compare gcp(r) and gpp(r) as obtained from the two different routes
for the composition ηc = 0.30 and ηp = 0.15, resulting in ηr

p = 0.328. As seen, these
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Figure 2. Radial distribution functions, gcc, gcp, and gpp, as functions of separation normalized by
the colloid diameter for ξ = 0.25, ηc = 0.30, ηp = 0.15, and ηr

p = 0.328. The lines correspond to
data from MC simulation of the binary mixture and symbols to MC simulation of the one-component
AO model. For clarity, gcc and gpp have been offset vertically by ±1/2.

radial distribution functions are also quantitatively reproduced by the effective one-component
description, a result which holds for all compositions studied. It follows that for ξ = 0.25
pair-wise additivity of the AO potential is an excellent approximation, as expected also from
the work of Meijer and Frenkel [48, 49].

The Percus–Yevick (PY) theory is generally the integral equation of choice for short-
range interactions [62]. It has been applied in the past to study liquid structure both in the
effective one-component [50] and the binary [63, 64] AO systems. In figure 3 we examine
the PY prediction for the colloid–colloid radial distribution functions by comparing against
results from simulation. In general, PY theory compares favorably for low to moderate
polymer concentrations. As shown in the inset to figure 3, it does not reproduce the shoulder
in the second peak structure that appears, presumably close to freezing, at higher polymer
concentrations, but otherwise it captures the second peak structure well. In addition, and
in contrast to the PY hard-sphere prediction, the theory tends to overestimate somewhat
the contact values of the radial distribution function when the polymer concentrations is
high. Overall, however, PY theory provides near-quantitative predictions for the colloidal
microstructure in the single-phase fluid regime. It is then to be expected that it compares
well in terms of the colloid–colloid structure factor, Scc(k), as is also seen to be the case in
figure 4. Deviations between PY theory and simulation results for Scc(k) appear, however,
when polymer concentrations become high, as shown in the inset to figure 4. As seen by the
low-k upturn and the split in the second peak of the corresponding gcc(r) in figure 1, this
composition should be close to a phase boundary. Indeed, as Lo Verso et al have found by a
hierarchical reference theory [65], this composition is very close to the metastable binodal. We
note also that in the region of the phase diagram where one expects a fluid–solid transition [65]
the height of the primary structure factor peak reaches values nowhere near those expected from
the Hansen–Verlet freezing criterion [62], as also previously noted for this system [50, 63].
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Figure 3. Comparison of colloid–colloid radial distribution function gcc(r) as a function of
separation normalized by the colloid diameter from MC simulation of the two-component AO
system (symbols) and PY theory for the one-component AO system (lines). Two compositions
at ξ = 0.25 are shown: ηc = 0.35, ηp = 0.10, ηr

p = 0.27 (line, circles) and ηc = 0.10, ηp = 0.20,
ηr

p = 0.248 (line, squares). For clarity, gcc for the latter has been offset vertically by +1. The inset
is an enhancement about the second peak for ηc = 0.35, ηp = 0.10, ηr

p = 0.27.

In the next section the structure factor is used as input in MCT for predictions of glass
transitions.

While PY theory captures the liquid structure well for the one-component AO system, the
two-component version does so only when the polymer concentration is kept low. It is readily
seen that in the limit ηc → 0, the two-component PY theory yields gcc(r) ≈ 1 − βφAO(r)

in the range σc < r < σc(1 + ξ) rather than gcc(r) ≈ e−βφAO(r). It follows that accurate
predictions are obtained only for low polymer concentrations, as observed by Dijkstra and co-
workers [64]. To predict the remaining radial distribution functions, we propose to exploit
the accuracy of the one-component PY theory in formulating simple approximations for gcp(r)

and gpp(r). As discussed in the appendix, one such approximation is realized by calculating the
radial distribution functions subject to the two-component PY closure with the added constraint
that gcc(r) be determined by the one-component PY theory applied to the one-component AO
model. In this prescription we rely on equation (5) to provide the connection between ηp,
which appears in the two-component Ornstein–Zernike equations, and ηr

p, which is required
for solving the one-component PY equation.

In figure 5 we compare results from this revised PY theory for the partial radial distribution
functions with results from simulation. The theory is in good agreement with the simulation
result for gcp(r) but underpredicts somewhat the result for gpp(r), where it fails to produce
the expected result, gpp(0) = 1/α [52]. A second, even more simple, approximation can be
formulated, again by exploiting that accurate results are obtained for gcc(r) in the effective
one-component system using the PY closure. As shown in the appendix, the remaining
radial distribution functions can be expressed in terms of integrals over gcc(r), gcp(r), and
higher-order correlation functions. For small size ratios only a few terms are non-zero, and,
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Figure 4. The colloid–colloid static structure factor Scc as a function of the normalized wavevector
kσc for two different compositions, both with ξ = 0.25, as obtained from MC simulations of
the effective one-component system interacting via the AO potential (symbols) and from the one-
component PY theory (lines): ηc = 0.35, ηr

p = 0.27 (line, circles) and ηc = 0.10, ηr
p = 0.248

(line, squares). The inset shows the MC simulated Scc(k) (diamonds) for ηc = 0.30 and ηr
p = 0.42

together with the PY result (line). The corresponding simulation result for gcc(r) is given in figure 1.

moreover, one may expect that the leading-order terms dominate. Thus we approximate the
radial distribution functions gcp(r) and gpp(r) by keeping just the first few terms involving
only pair distribution functions, which can be determined easily by numerical integration once
gcc(r) has been obtained from solution of the one-component PY theory. Figure 5 shows
the predictions from this low-order approximation. As seen, they slightly overpredict the
simulation results for the first correlation peak and are slightly low just prior to the second peak
in gcp(r). For smaller size ratios, ξ < 0.25, the two approximations fall closer to one another.
Similarly to figure 5, however, the revised integral equation underpredicts the simulation results
for the small-r structure of gpp(r), whereas the low-order approximation overpredicts it. The
predictions improve on the whole, however, with decreasing size ratio, but the integral equation
theory appears to give better structural predictions.

4.2. Mode-coupling theory predictions

With the PY theory as input, we proceed to investigate the output of MCT. MCT gives a
dynamic description of the glass transition. The theory emerges as a set of nonlinear equations
for the dynamic structure factor S(k, t) on closing the governing equations of motion. Self-
consistent solutions of the equations require the static structure factor as input and yield the time
and wavevector dependence of S(k, t). Fluid states are characterized by a vanishing long-time
limit: S(k, t → ∞) = 0. For systems of strongly interacting particles, however, the equations
exhibit bifurcations for S(k, t → ∞), such that S(k, t → ∞) acquires a non-zero value. Thus,
glassy states arise in this idealized version of the theory as systems with an indefinite density
correlation, leading to solid-like properties, yet systems remain disordered structurally.
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Figure 5. Radial distribution functions, gcc, gcp, and gpp, as functions of separation normalized by
the colloid diameter for ξ = 0.25, ηc = 0.30, ηp = 0.15, and ηr

p = 0.328. Circles are results
from MC simulation of the binary mixture, the solid lines correspond to results from the revised PY
theory, and the dashed lines are a low-order approximation. Both approximations are based on gcc

as obtained from the one-component PY theory (see the appendix). For clarity, gcc and gpp have
been offset vertically by ±1/2.

In this study we use the colloid–colloid static structure factor Scc(k) from the one-
component PY theory as input in MCT, which makes for a fully predictive theory for the
AO interaction. Glass transitions are determined here from MCT as functions of colloid
and polymer volume fractions for somewhat larger colloidal attraction ranges than have been
considered before (see, however, related approaches by Chen and Schweizer [33]). In this
case the transitions are simultaneously influenced by the cage effect and the moderate-range
attraction and it is the task of MCT to gauge these effects in locating glass transitions. In
addition, for these longer-range attractions MCT predicts transitions that traverse the phase
diagram until they meet the spinodal on the liquid side. This prediction appears to be generic for
colloidal systems, though MCT predicts otherwise for shorter-ranged attractions [22, 23, 34],
as computer simulations find that no matter how short the range of attraction is made, structural
arrest transitions meet the binodal on the liquid side [25]. Thus, for the situation at hand, MCT
predictions agree at least qualitatively with this recent finding.

Results from combining PY and MCT theories are shown in figure 6, for size ratios of
0.20, 0.25, and 0.30, in terms of ηr

p and ηc. The inset shows the same results in the (ηp, ηc)
representation. Spinodals were determined from PY theory using the compressibility route and
the procedure suggested by Gallerani et al [66]. As seen, phase separation requires larger values
of ηr

p or ηp the larger the size ratio is. This occurs because the well depth of the AO potential is
governed mainly by the polymer number density rather than ηr

p, and it is qualitatively consistent
with observations from experiments on sterically stabilized colloids mixed with non-adsorbing
polymers close to theta conditions [7, 47]. Shah et al [47] have also noted a more subtle effect.
The fluid–fluid binodal becomes a weak function of the size ratio in the (ηp, ηc) representation
at higher colloid volume fractions, and, furthermore, binodals for different ξ cross one another

9
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Figure 6. Glass transitions predicted by MCT using the PY colloid–colloid structure factor as
input. Results are shown in terms of the polymer reference volume fraction ηr

p as a function of
colloid volume fraction ηc for three different polymer–colloid size ratios, as labelled. The inset
depicts the same data in terms of the polymer volume fraction ηp, based on the total sample volume.

in this region. Although difficult to see from the inset to figure 6, the PY spinodals exhibit the
same trend. It should be noted, however, that while in qualitative agreement with experiments,
the PY approximation cannot in general be trusted in delivering precise estimates of critical
points [67]. However, judging from the phase diagram for ξ = 0.34 [51], which is reasonably
close to the attraction ranges of interest here, the PY estimate for the value of ηr

p at the critical
point is in close agreement but the critical colloid density is underestimated.

The glass transitions predicted by MCT are shown in figure 6. For ηr
p = ηp = 0 they

start at the hard-sphere glass transition value, ηc = 0.5159 [10], given the PY structure factor
input. For small values of ηr

p or ηp the transition tends to larger colloid volume fractions only
to migrate toward lower ηc on increasing the polymer concentration further. It follows that
there is a region of reentrant glass melting, studied in depth by experiment [19–21], computer
simulation [19, 68, 69], and MCT [18, 19, 70, 71] for far shorter-range attractions where this
behaviour is more pronounced and leads to isostructural glass–glass transitions.

Increasing the polymer concentration sufficiently leads to the MCT transitions meeting
the PY spinodal on the liquid side. As seen, this occurs closer to the critical point when the
attraction is of short range. Somewhat prior to encountering the spinodal the transitions become
non-monotonic functions of ηr

p, suggesting that small-wavelength correlations are influencing
the MCT predictions. This does not occur for shorter-range attractions, where the predictions
are strictly governed by the large wavevector behaviour of Scc(k). Since it is unknown, on
closing in on a critical point, at which point MCT should be replaced by a more complete
theory, handling also the critical dynamics, predictions in this region are the least reliable.

A very detailed experimental phase diagram, identifying locations of not only equilibrium
phase coexistence but also non-ergodic gel states, is available from the work of Ilett and
co-workers [7] for ξ ≈ 0.24. They based their study on nearly hard-sphere poly(methyl
methacrylate) particles dispersed in a slightly-better-than-theta solvent for the added, non-
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Figure 7. Comparison of MCT predictions for glass transitions against experiments on model
colloid–polymer mixtures for ξ ≈ 0.24, reproduced from [7], in terms of polymer mass
concentration and colloid volume fraction. The symbols denote experimental data: (©) fluid, (+)
liquid + crystal, (�) gas + crystal, (×) gas + liquid + crystal, and (�) no visible crystallization.
The lines are MCT predictions for different size ratios along with PY spinodals (marked by small
circles as in figure 6), as labelled. Note that the colloid volume fraction in the theoretical predictions
has been shifted to agree with the experimental glass transition value, ≈0.58 [14, 15, 17], namely
ηc = η

theory
c 0.58/0.516.

adsorbing polystyrene polymer. The phase diagram is reproduced in figure 7, where colloidal
fluid, gas–crystal, liquid–crystal, and three-phase coexistence regions have been determined as
a function of added polymer mass concentration and colloid volume fraction. In addition, at the
highest polymer concentrations crystallization was not detected. For the sake of showing the
sensitivity of the MCT predictions to the size ratio, we have treated ξ as an adjustable parameter
while keeping the polymer molecular weight Mw constant at the value quoted by Ilett et al [7].
The polymer mass concentration is then calculated as cp = 3Mwηp/(4π(aξ)3 Na), where a is
the colloid radius and Na is Avogadro’s constant.

Figure 7 shows comparisons based on the MCT results for the glass transitions in figure 6
for ξ = 0.20, 0.25, and 0.30. They are shown along with the PY predictions for the spinodal.
Although their locations do not vary too much in the (ηp, ηc) representation in figure 6, they
separate from one another drastically because of the ξ−3 factor in the conversion from ηp to cp.
It is clear from the comparison that among the ξ values the best agreement is obtained by using
ξ = 0.25 in the theory, which is nearly the same as that used in the experiments. For this size
ratio the predicted glass transition line has a slope that agrees approximately with the cessation
of crystal formation in the experiments.

Given the sensitivity of the prediction to the value of ξ and that it is a first-principles
modelling effort, this is an encouraging result. However, this result also begs a number of
questions. We have opted for treating the polymer in the simplest possible way. Polymer–
polymer interactions and polymer deformability have not been included; rather, polymers
are taken as phantom spheres. We have attempted to include effects of polymer–polymer
interactions in the manner of Prasad [72], by which a non-ideal osmotic pressure and a
concentration-dependent polymer size are inserted in the AO potential. This has the effect
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of weakening the attraction relative to the standard AO potential. Consequently, predictions
are shifted up in figures 6 and 7. In addition, MCT has a tendency to favour structural arrest
over liquid states, whereby, for instance, the hard-sphere glass transition prediction in figure 7
is about 12% lower than the experimental value of ≈0.58 [14, 15, 17]. This effect is however
mitigated to a large extent by using an accurate structure factor input [73, 74]. Considering
a fuller range of MCT predictions for systems governed by the cage effect, quantitative
discrepancies, with for example results from simulation [73, 75], remain, but predictions
generally do not differ by more than ≈10–20%. However, for very short-range attractions, near
the region of re-entry, quantitative agreement with computer simulations requires applying a
substantial shift factor to the attraction strength [71]. It follows that ‘correcting’ the MCT glass
transitions would likely require a shift of the predictions in the same direction as that brought
on by modelling polymer–polymer interactions as in [72]. The agreement seen in figure 7 for
ξ = 0.25 would markedly worsen if a substantial MCT correction were applied, particularly
if combined with non-ideal polymer effects. On the other hand, if AO theory is a reasonable
model for the case at hand, the results in figure 7 would certainly tolerate MCT corrections of
the magnitude normally expected.

5. Conclusions

The AO model, perhaps the simplest, yet non-trivial, model of the depletion interaction, has
been applied to colloid–polymer mixtures. The size ratio has been kept sufficiently small so that
the two-component AO theory can be brought over to the effective one-component version, as
verified by comparison of MC simulation of the two systems combined with particle insertions.
PY theory for the one-component AO system yields near-quantitative predictions for colloid–
colloid radial distribution functions and structure factors away from phase boundaries. Simple
approximations have been suggested that produce reasonable predictions of the remaining
radial distribution functions in the mixture. Mode-coupling theory based on the PY structural
input produces predictions for glassy states in the phase diagram that are in good agreement
with experiments on model colloid–polymer mixtures with ξ ≈ 0.24.
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Appendix

In this appendix we aim to derive some approximate results for the colloid–polymer and
polymer–polymer pair correlation functions within the Asakura–Oosawa model. To this end
we rely on the connection between the binary and the effective one-component descriptions,
which becomes exact for small colloid–polymer size ratios, ξ � 2

√
3 − 1. Furthermore, we

exploit the fact that accurate results are obtained from Percus–Yevick integral equation theory
for the one-component AO system [50].

We consider first Vrij’s [38] formulation of the AO model, i.e., Nc hard-sphere colloids
mixed with Np interpenetrable polymers in a volume V at temperature T . Following Brader
et al [40], but restricting the situation to homogeneous systems, we apply the semi-grand-
canonical ensemble, in which the polymer fugacity zp is fixed, along with Nc, V , and T . As
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shown by them, the polymer degrees of freedom can be integrated out, leaving the following
expression for the partition function:

� = ezp V (1−ηc(1+ξ)3)

Nc!�3Nc
c

∫

dRNc e−β
∑Nc

i> j (φcc(Ri j )+φAO(Ri j )) (6)

where ξ � 2/
√

3 − 1 has been used to eliminate higher-order contributions. In equation (6),
ηc = πρcσ

3
c /6 is the volume fraction of colloids, and �ν is the thermal de Broglie wavelength

of species ν. In the configuration integral the hard-sphere colloid–colloid potential, φcc, and
the AO potential, φAO, appear as functions of the separation distance between colloids, Ri j . In
the semi-grand-canonical ensemble the density distributions are defined as

�p(r1) = �−1

Nc!�3Nc
c

∞∑

Np=1

z
Np
p

(Np − 1)!
∫

dr2 · · · drNp dRNc e−βW (7)

�(2)(R1, r1) = �−1

(Nc − 1)!�3Nc
c

∞∑

Np=1

z
Np
p

(Np − 1)!
∫

dr2 · · · drNp

∫

dR2 · · · dRNc e
−βW (8)

�(2)(r1, r2) = �−1

Nc!�3Nc
c

∞∑

Np=2

z
Np
p

(Np − 2)!
∫

dr3 · · · drNp dRNc e−βW (9)

where W = ∑Nc
i< j φcc(Ri j) + ∑Nc

i=1

∑Np

j=1 φcp(|Ri − r j |) is the potential energy and lower-
case coordinates have been used to distinguish polymer coordinates from upper-case colloid
coordinates. Similar manipulations as led to equation (6) can be used to express the density
distributions in terms of higher-order correlation functions; in particular, we find that

ρp

zp
= 1 + ρc

∫

dR1 f11 + ρ2
c

2

∫

dR1 dR2 f11 f21gcc(|R1 − R2|) (10)

gcp(|R1 − r1|) = zp

ρp

(

(1 + f11)

[

1 + ρc

∫

dR2 f21gcc(|R1 − R2|)
]

+ ρ2
c

2

∫

dR2 dR3 f21 f31g(3)
ccc(R1, R2, R3)

)

(11)

gpp(|r1 − r2|) = zp

ρp

(

1 + ρc

∫

dR1 f12gcp(|R1 − r1|)

+ ρ2
c

2

∫

dR1 dR2 f12 f22g(3)
ccp(R1, R2, r1)

)

(12)

where fi j = e−βφcp(|Ri −r j |) − 1 is the colloid–polymer Mayer function. Equation (10),
or equivalently equation (5) since ηr

p = πzpσ
3
p /6, has been derived by Brader et al [40]

and connects the binary and the effective one-component descriptions exactly as long as
ξ � 2/

√
3 − 1. As an intermediate result to equations (10)–(12), one readily obtains insertion

formulae [76] for the quantities of interest:

ρp

zp
=
〈
e−β

∑Nc
i=1 φcp(|Ri −r1|)

〉

AO

gcp(|r|) = zp

ρp

〈
e−β

∑Nc
i=1 φcp(|Ri −r1|)V δ(R1 − (r + r1))

〉

AO

gpp(|r1 − r2|) =
(

zp

ρp

)2 〈
e−β

∑Nc
i=1 φcp(|Ri −r1|)e−β

∑Nc
i=1 φcp(|Ri −r2|)

〉

AO
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where the averages are configurational averages in the one-component AO system. It follows
that by inserting one or two polymer spheres in the colloid system one can determine the
correlation functions by MC for any value of the fugacity. This has recently been made use
of by Dijkstra et al [61], who also devised a Monte Carlo scheme for handling size ratios
beyond ξ ≈ 0.1547.

As an approximation, we neglect the higher-order terms in equations (11) and (12), in
addition to neglecting terms deriving from non-pair-wise additivity of the AO potential, such
that

gcp(|R1 − r1|) ≈ zp

ρp
e−βφcp(|R1−r1 |)

(
ρp

zp
+ ηc(1 + ξ)3

+ ρc

∫

dR2 f21(|R2 − r1|)gcc(|R2 − R1|)
)

(13)

gpp(|r1 − r2|) ≈ zp

ρp

(
ρp

zp
+ ηc(1 + ξ)3 + ρc

∫

dR1 f12(|R1 − r2|)gcp(|R1 − r1|)
)

. (14)

We have added and subtracted ρp/zp within the parentheses and used the leading-order result,
ρp/zp = 1 − ηc(1 + ξ)3, which ensures that the correlation functions approach unity at
large separations. However, by doing so we sacrifice the consistency in the opposite limit:
gpp(0) = zp/ρp. Reasonable results should accordingly be obtained when ηc and ξ are
small. Once we have the colloid–colloid radial distribution function (cf below), a low-order
approximation for the colloid–polymer and polymer–polymer radial distribution functions is
obtained by completing the integrations in equations (13) and (14), which is readily done using
bipolar coordinates.

A second approximation may be formulated, again by exploiting that accurate results are
obtained for gcc(R) in the effective one-component system using, for example, the Percus–
Yevick closure. Here we begin with the Percus–Yevick closure of the Ornstein–Zernike
equations for the binary AO mixture. Since the polymer–polymer direct correlation function
vanishes in this case, we are left with the following Fourier-transformed equations:

hcc(k) = ccc(k) + ρcccc(k)hcc(k) + ρpccp(k)hcp(k) (15)

hcp(k) = ccp(k)(1 + ρchcc(k)) (16)

hpp(k) = ρcccp(k)hcp(k) (17)

involving the Fourier-transformed total and direct correlation functions, hνμ(k) and cνμ(k). It
is well known that these equations are rather poor at capturing correlations in the AO system,
at least at high polymer concentrations [64]. The main problem arises from equation (15),
which is readily seen in the limit ρc → 0, where it reduces to hcc(R) = −βφAO(R) (with
zp replaced by ρp in the AO potential, consistent with the prescribed limit) in the range
σc < R < σc(1 + ξ) rather than e−βφAO(R) − 1. The hyper-netted chain closure, on the other
hand, does yield the correct dilute-limiting result. But rather than exploring alternatives to
the Percus–Yevick closure, we replace equation (15) by the effective one-component equation,
heff

cc (k) = ceff
cc (k) + ρcceff

cc (k)heff
cc (k), where the colloids now interact also via the AO potential.

This equation is solved subject to the one-component Percus–Yevick closure and the connection
between the descriptions is made through equation (10), relating zp to ρp. In the absence of
approximating closures, and as emphasized by Dijkstra et al [64], hcc(k) = heff

cc (k), so long as
ξ � 2/

√
3 − 1. It is easily verified also that the two descriptions are connected via Adelman’s

definition of the effective one-component direct correlation function [77], in this case given by

ceff
cc (k) = ccc(k) + ρpccp(k)2. (18)
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